 |
図2 グラフ表示ソフト |
(1) 数学T,「2次関数」の指導
前時までに1次関数を復習し2次関数の一般形と標準形について学んだ。本時は2次関数y=a(x−α)(x−β)のグラフの性質について学ぶ。生徒に「y=2(x−1)(x−3)はどのようなグラフになるか」と問うと,「放物線になる」と答える生徒は少なく,与えられた関数の式にx2がないので,むしろ直感的に「直線になる」や「折れ線になる」と答える生徒のほうが多かった。そこで,まずはそのグラフを実際に調べてみることにした。
今回開発した情報携帯端末用のグラフ表示ソフト(図2)は2次関数については一般形と標準形しか表示できない。そのため,どちらかの形に変形しなければならない。生徒はまず対応表を作成しグラフを手書きした。その後,一般形に変形し情報携帯端末を使ってグラフを表示させ手書きのグラフを確かめた。グラフを上手くかけなかった生徒は表示させたグラフをもとに修正し,どのような性質があるかを調べた。その後,得られた性質が他の関数の式の場合でも当てはまるかどうかをこのグラフ表示ソフトで確かめた。
 |
図3 サイコロの確率 |
情報携帯端末を活用することで,グラフの作成に時間をとられず,そのグラフの性質の考察に指導を焦点化することができた(指導内容の焦点化)。また,正確にグラフが描けることでその性質を視覚的に理解することができた(情報の視覚化)。学習活動の有効な道具として活用できたものと思われる。
(2) 数学T,「確率」の指導
まず初めに,実物のサイコロを使って,何回が実験し1から6の目の相対度数を計算した。試行回数が少ないと相対度数に偏りがでた。そこで,開発した「サイコロの確率」という教材(図3)を使って,試行回数によって1から6の目の相対度数がどのように変化するかを実験・観察した。この教材の画面は情報携帯端末を液晶プロジェクタに接続することでクラス全体での共有が可能である(図4)。
 |
図4 実践の様子 |
情報携帯端末での実験は実際の実験では不可能な多数回の試行を瞬時に行うことができ実験結果の考察に十分な時間を確保することができた(指導内容の焦点化)。また,実験の結果をすぐに数値とグラフで見ることができ,試行回数と相対度数の変化の様子を視覚的に理解することができたものと思われる(情報の視覚化)。また,考察結果を生徒が発表するときはプロジェクタに接続するだけでプレゼンテーションの道具としても活用ができた(図4)。
(3)情報B,「コンピュータにおける情報の処理」の指導
指導内容は新教科「情報B」を想定したものであるが,実際の実践は専攻科の学校設定科目「情報技術応用」で行ったものである。前回までは四則演算や分岐のアルゴリズムについて簡単な事例を通して学んでいる。それらをもとに今回はそれらを組み合わせたアルゴリズムを考えプログラムを組む学習活動である(図5)。フローチャートには簡単に書き表すことができたが,プログラムには時間を必要とした。特にイベントドリブン型であるため,ある程度の慣れが必要であると思われた。しかし,情報携帯端末でプログラムからデバッグまで行えるため,自宅にパソコンやソフトウェアがない生徒も,自宅に持ち帰ってすぐに続きができるなど,学習の継続性を保つことができた。また,情報携帯端末はパソコンの補助というよりはむしろパソコンと同様に使用できるものと思われる。
|